A general class of infinite dimensional Dirac operators and path integral representation of their index

From MaRDI portal
Publication:1188000

DOI10.1016/0022-1236(92)90082-TzbMath0803.46082MaRDI QIDQ1188000

Asao Arai

Publication date: 3 August 1992

Published in: Journal of Functional Analysis (Search for Journal in Brave)




Related Items

COVER OF THE BROWNIAN BRIDGE AND STOCHASTIC SYMPLECTIC ACTIONA stochastic approach to the Euler-Poincaré number of the loop space of a developable orbifoldScaling limit of anticommuting selfadjoint operators and applications to Dirac operatorsREGULARIZED EULER–POINCARÉ NUMBER OF THE INFINITE-DIMENSIONAL TORUSSpectral properties of Laplacians on an abstract Wiener space with a weighted Wiener measure\(L^{2}\)-Betti numbers of infinite configuration spacesOperator-theoretical analysis of a representation of a supersymmetry algebra in Hilbert spaceOn the convergence of numerical integration as a finite matrix approximation to multiplication operatorLaplace operators in deRham complexes associated with measures on configuration spacesDe Rham-Hodge-Kodaira decomposition in \(\infty\)-dimensionsStochastic Wess-Zumino-Witten model over a symplectic manifoldA functional directional derivative in infinite dimensional spaces and its application to \(\overline{\partial}\)-equationsDirac operators in Boson-Fermion Fock spaces and supersymmetric quantum field theoryOn the spectrum of semi-classical Witten-Laplacians and Schrödinger operators in large dimensionDe Rham cohomology of configuration spaces with Poisson measureCommutation properties of anticommuting self-adjoint operators, spin representation and Dirac operatorsStrong anticommutativity of dirac operators on boson—fermion fock spaces and representations of a supersymmetry algebraSingular Integral Homology of the Stochastic Loop SpaceFUNCTIONAL INTEGRAL REPRESENTATIONS AND GOLDEN–THOMPSON INEQUALITIES IN BOSON–FERMION SYSTEMSStochastic Cohomology of the Frame Bundle of the Loop SpaceCharacterization of anticommutativity of self-adjoint operators in connection with Clifford algebra and applications



Cites Work


This page was built for publication: A general class of infinite dimensional Dirac operators and path integral representation of their index