Minimal signature in lifting of operators. II
From MaRDI portal
Publication:1188097
DOI10.1016/0022-1236(92)90124-2zbMath0778.47025OpenAlexW2035831076MaRDI QIDQ1188097
Aurelian Gheondea, Tiberiu Constantinescu
Publication date: 13 August 1992
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0022-1236(92)90124-2
spectral projectionselfadjoint operatorKrein spaces\(J\)-selfadjoint operatorKrein space adjointlifting of commutantsselfadjoint extension of symmetric operators
Dilations, extensions, compressions of linear operators (47A20) Linear operators on spaces with an indefinite metric (47B50)
Related Items
Contractions and the Commutant Lifting Theorem in Kreĭn Spaces ⋮ Contractive intertwining dilations of quasi-contractions ⋮ Completion and extension of operators in Kreĭn spaces ⋮ Hermitian kernels with bounded structure ⋮ One-step completions of Hermitian partial matrices with minimal negative signature ⋮ The negative signature of some Hermitian matrices ⋮ The Schur algorithm and coefficient characterizations for generalized Schur functions ⋮ Completion, extension, factorization, and lifting of operators
Cites Work
- A lifting theorem for bicontractions on Kreǐn spaces
- Lifting of operators and prescribed numbers of negative squares
- Krein spaces of analytic functions
- Dilatations des commutants d'opérateurs pour des espaces de Krein de fonctions analytiques. (Dilations of commutants of operators for Krein spaces of analytic functions)
- On a quotient norm and the Sz.-Nagy-Foias lifting theorem
- On the Matrix Equation $AX + X^ * A^ * = C$
- Norm-Preserving Dilations and Their Applications to Optimal Error Bounds
- Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im RaumeIIx zusammenhängen. I. Einige Funktionenklassen und ihre Darstellungen
- Generalized Interpolation in H ∞
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item