Error bounds for the solution of Volterra and delay equations
From MaRDI portal
Publication:1189137
DOI10.1016/0168-9274(92)90015-6zbMath0778.65089OpenAlexW2064156185MaRDI QIDQ1189137
Peter Linz, Richard L. C. Wang
Publication date: 26 September 1992
Published in: Applied Numerical Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0168-9274(92)90015-6
convergence analysisFredholm integral equationserror boundsnormed spacesdelay equationslinear operatorVolterra equationsefficient and reliable numerical software
Numerical methods for integral equations (65R20) Numerical solutions to equations with linear operators (65J10) Fredholm integral equations (45B05) Volterra integral equations (45D05)
Related Items
A Legendre–Petrov–Galerkin method for solving Volterra integro-differential equations with proportional delays, Legendre spectral collocation methods for Volterra delay-integro-differential equations, Legendre spectral collocation methods for pantograph Volterra delay-integro-differential equations, An efficient numerical method based on Euler wavelets for solving fractional order pantograph Volterra delay-integro-differential equations
Cites Work
- Unnamed Item
- Effective error estimates for the numerical solution of Fredholm integral equations
- Einige abstrakte Begriffe in der numerischen Mathematik (Anwendungen der Halbordnung).(Some abstract notions in the numerical mathematic. (Applications et semiorder))
- Bounds and Estimates for Condition Numbers of Integral Equations
- Precise bounds for inverses of integral equation operators