Bernstein type theorems for compact sets in \({\mathbb{R}{}}^ n\)
From MaRDI portal
Publication:1190997
DOI10.1016/0021-9045(92)90139-FzbMath0748.41008OpenAlexW2001353807MaRDI QIDQ1190997
Publication date: 27 September 1992
Published in: Journal of Approximation Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0021-9045(92)90139-f
Related Items
𝐿^{𝑝}-Bernstein inequalities on 𝐶²-domains and applications to discretization ⋮ The theory of multi-dimensional polynomial approximation ⋮ Extremal growth of polynomials ⋮ Bernstein inequality on conic domains and triangles ⋮ Pseudometrics, distances and multivariate polynomial inequalities ⋮ Note on a conjecture about Bernstein type inequalities for multivariate polynomials ⋮ Bernstein-type inequalities ⋮ Laplace Beltrami operator in the Baran metric and pluripotential equilibrium measure: the ball, the simplex, and the sphere ⋮ Constants in Markov's and Bernstein inequality on a finite interval in \(\mathbb{R}\)
Cites Work
- A new capacity for plurisubharmonic functions
- The extremal psh for the complement of convex, symmetric subsets of \({\mathbb{R}}^ N\)
- Markov's inequality and \(C^{\infty}\) functions on sets with polynomial cusps
- On the equivalence between locally polar and globally polar sets for plurisubharmonic functions on \(C^n\)
- Plurisubharmonic extremal functions and complex foliations for the complement of convex sets in \(\mathbf R^ n\)
- The Complex Equilibrium Measure of a Symmetric Convex Set in R n
- Siciak's extremal function of convex sets in $C^N$
- A Functional Equation for the Joukowski Transformation
- On Some Extremal Functions and their Applications in the Theory of Analytic Functions of Several Complex Variables
- Extremal plurisubharmonic functions in $C^N$
- Экстремальные плюрисубгармонические функции, ортогональные многочлены и теорема Бернштейна-Уолша для аналитических функций многих комплексных переменных
- Complex Equilibrium Measure and Bernstein Type Theorems for Compact Sets in R n
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item