Highly cuspidal pseudocoefficients and \(K\)-theory
From MaRDI portal
Publication:1191410
DOI10.1007/BF01445230zbMath0789.22028OpenAlexW2911601149MaRDI QIDQ1191410
Publication date: 27 September 1992
Published in: Mathematische Annalen (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/164889
Dirac operatorsirreducible unitary representationsindex formulareal reductive Lie groupshighly cuspidal functionsLefschetz functionspseudocoefficientstwisted Euler- Poincaré functions
Semisimple Lie groups and their representations (22E46) (K)-theory and operator algebras (19K99) Continuous cohomology of Lie groups (22E41)
Related Items (20)
On the generic part of the cohomology of compact unitary Shimura varieties ⋮ Intégrales orbitales sur les groupes de Lie réductifs ⋮ Holomorphic torsion and closed geodesics ⋮ Galois representations arising from some compact Shimura varieties ⋮ Twisted Dirac Index and Applications to Characters ⋮ Représentations galoisiennes associées aux représentations automorphes autoduales de \(GL(n)\). (Galois representations associated with self-dual automorphic representations of \(GL(n)\)) ⋮ Twisted Lefschetz number formula and 𝑝-adic trace formula ⋮ The index theorem and the trace formula ⋮ Euler-Poincaré pairing, Dirac index and elliptic pairing for Harish-Chandra modules ⋮ On the index of Dirac operators on arithmetic quotients ⋮ A prime geodesic theorem for \(\mathrm{SL}_4\) ⋮ Twisted limit formula for torsion and cyclic base change ⋮ Unnamed Item ⋮ Dirac cohomology and character lifting ⋮ Corps de nombres peu ramifiés et formes automorphes autoduales ⋮ Dirac cohomology, elliptic representations and endoscopy ⋮ Unnamed Item ⋮ On elliptic tempered characters ⋮ Lefschetz numbers and twisted stabilized orbital integrals ⋮ Cyclic homology, Selberg's principle and pseudo-coefficient
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Multipliers for the convolution algebra of left and right K-finite compactly supported smooth functions on a semi-simple Lie group
- \(L^ 2\)-index and the Selberg trace formula
- A Paley-Wiener theorem for real reductive groups
- The \(L^2\)-index theorem for homogeneous spaces of Lie groups
- Classification of irreducible tempered representations of semisimple groups. I
- Harmonic analysis on real reductive groups. I: The theory of the constant term
- A geometric construction of the discrete series for semisimple Lie groups
- Unitarizability of certain series of representations
- Dirac operator and the discrete series
- The Invariant Trace Formula. II. Global Theory
- Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs. II
This page was built for publication: Highly cuspidal pseudocoefficients and \(K\)-theory