The equation \(y'=fy\) in \(\mathbb{C}{}_ p\) when \(f\) is quasi-invertible
zbMath0749.12006MaRDI QIDQ1192068
Publication date: 27 September 1992
Published in: Rendiconti del Seminario Matematico della Università di Padova (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=RSMUP_1991__86__17_0
infraconnected setsBanach algebra of analytic elements\(T\)-filtersalgebraically closed, complete, non-archimedean valued fieldp-adic differential equation
Functional analysis over fields other than (mathbb{R}) or (mathbb{C}) or the quaternions; non-Archimedean functional analysis (46S10) Analytical theory of ordinary differential equations: series, transformations, transforms, operational calculus, etc. (34A25) (p)-adic differential equations (12H25) Non-Archimedean valued fields (12J25)
Cites Work
- The differential equation \(y'=fy\) in the algebras \(H(D)\)
- Fonctions analytiques et produits croulants. (Analytic functions and collapsing products)
- T-filtres, ensembles analytiques et transformation de Fourier \(p\)-adique
- Éléments analytiques et filtres perces sur un ensemble infraconnexe
- The equation y′ = fy in zero residue characteristic
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: The equation \(y'=fy\) in \(\mathbb{C}{}_ p\) when \(f\) is quasi-invertible