An orthogonal accelerated deflation technique for large symmetric eigenproblems
DOI10.1016/0045-7825(92)90154-CzbMath0754.65039OpenAlexW2059400898MaRDI QIDQ1192738
Flavio Sartoretto, Giuseppe Gambolati, Paolo Florian
Publication date: 27 September 1992
Published in: Computer Methods in Applied Mechanics and Engineering (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0045-7825(92)90154-c
numerical exampleRayleigh quotientconjugate gradient iterationssimultaneous iterationconjugate gradient minimizationEigenvalue algorithmsincomplete Chebyshev preconditioninglarge sparse symmetric generalized matrix eigenvalue problemssuccessive deflation
Computational methods for sparse matrices (65F50) Numerical computation of eigenvalues and eigenvectors of matrices (65F15) Numerical computation of matrix norms, conditioning, scaling (65F35)
Related Items
Cites Work
- Unnamed Item
- Extreme eigenvalues of large sparse matrices by Rayleigh quotient and modified conjugate gradients
- An improved iterative optimization technique for the leftmost eigenpairs of large symmetric matrices
- Accelerated simultaneous iterations for large finite element eigenproblems
- A new look at the Lanczos algorithm for solving symmetric systems of linear equations