Lyapunov exponents of the Schrödinger equation with quasi-periodic potential on a strip
From MaRDI portal
Publication:1193100
DOI10.1007/BF02099395zbMath0759.39001MaRDI QIDQ1193100
Eugene Sorets, Ilya Ya. Goldsheid
Publication date: 27 September 1992
Published in: Communications in Mathematical Physics (Search for Journal in Brave)
Related Items (3)
Dynamics and spectral theory of quasi-periodic Schrödinger-type operators ⋮ Positive Lyapunov exponents for higher dimensional quasiperiodic cocycles ⋮ Anderson localization for one-frequency quasi-periodic block operators with long-range interactions
Cites Work
- Unnamed Item
- Unnamed Item
- Localization for a class of one dimensional quasi-periodic Schrödinger operators
- Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnold et de Moser sur le tore de dimension 2
- Kotani theory for one dimensional stochastic Jacobi matrices
- A metal-insulator transition for the almost Mathieu model
- Stochastic Schrödinger operators and Jacobi matrices on the strip
- Positive Lyapunov exponents for Schrödinger operators with quasi- periodic potentials
- Anderson localization for the 1-D discrete Schrödinger operator with two-frequency potential
- Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential
This page was built for publication: Lyapunov exponents of the Schrödinger equation with quasi-periodic potential on a strip