Fixed-width interval estimation of the minimum point of a regression function based on the Kiefer-Wolfowitz procedure
From MaRDI portal
Publication:1194000
DOI10.1016/0378-3758(92)90160-TzbMath0778.62075OpenAlexW2137244695MaRDI QIDQ1194000
Publication date: 27 September 1992
Published in: Journal of Statistical Planning and Inference (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0378-3758(92)90160-t
asymptotic efficiencycentral limit theoremstopping ruleKiefer-Wolfowitz procedureasymptotic consistencyfirst momentadaptive procedureasymptotically consistent fixed-width confidence intervalminimum of a regression function
Central limit and other weak theorems (60F05) Stochastic approximation (62L20) Sequential estimation (62L12)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Correction to ? On a new stopping rule for stochastic approximation
- On a Class of Stochastic Approximation Processes
- Consistency and asymptotic efficiency of slope estimates in stochastic approximation schemes
- On a new stopping rule for stochastic approximation
- Functional and random central limit theorems for the Robbins-Munro process
- On the Asymptotic Theory of Fixed-Width Sequential Confidence Intervals for the Mean
- An Extension of the Robbins-Monro Procedure
- On the Strong Law of Large Numbers and the Central Limit Theorem for Martingales
- Asymptotic Distribution of Stochastic Approximation Procedures
- Stopping times for stochastic approximation procedures