A numerical method for locating stable periodic orbits in chaotic systems
From MaRDI portal
Publication:1197524
DOI10.1016/0167-2789(92)90176-NzbMath0761.58033OpenAlexW2169555639WikidataQ59657416 ScholiaQ59657416MaRDI QIDQ1197524
Jakub Zakrzewski, Dov Grobgeld, Eli Pollak
Publication date: 16 January 1993
Published in: Physica D (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0167-2789(92)90176-n
Attractors and repellers of smooth dynamical systems and their topological structure (37C70) Strange attractors, chaotic dynamics of systems with hyperbolic behavior (37D45) Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics (37C25)
Cites Work
- Unnamed Item
- The calculation of periodic trajectories
- Newton method for highly unstable orbits
- LYAPUNOV EXPONENTS IN CHAOTIC SYSTEMS: THEIR IMPORTANCE AND THEIR EVALUATION USING OBSERVED DATA
- Existence of stable orbits in the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="italic">x</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="italic">y</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>potential
- Quantum eigenvalues from classical periodic orbits
- Quantization of chaos
This page was built for publication: A numerical method for locating stable periodic orbits in chaotic systems