On nonlinear problems of mixed type: A qualitative theory using infinite- dimensional center manifolds
From MaRDI portal
Publication:1199668
DOI10.1007/BF01053805zbMath0754.35090MaRDI QIDQ1199668
Publication date: 16 January 1993
Published in: Journal of Dynamics and Differential Equations (Search for Journal in Brave)
Stability in context of PDEs (35B35) PDEs of mixed type (35M10) Second-order nonlinear hyperbolic equations (35L70) Linear symmetric and selfadjoint operators (unbounded) (47B25)
Related Items
Regularity of center manifolds via the graph transform, Centre manifolds for stochastic evolution equations, Stable manifolds to bounded solutions in possibly ill-posed PDEs, Stable and unstable manifolds for hyperbolic bi-semigroups, Center manifolds of infinite dimensions. I: Main results and applications, The Validity of Generalized Ginzburg-Landau Equations
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Eindeutigkeitsaussagen für das Tricomi-Problem im \({\mathbb{R}}^ 2\) für eine Klasse nichtlinearer Gleichungen gemischten Typs
- Center manifolds of infinite dimensions. I: Main results and applications
- Normal hyperbolicity of center manifolds and Saint-Venant's principle
- Über maximale \(L^ p\)-Regularität für Differentialgleichungen in Banach- und Hilbert-Räumen. (On maximal \(L^ p\)-regularity for differential equations in Banach and Hilbert spaces)
- A reduction principle for nonautonomous systems in infinite-dimensional spaces
- Center manifolds and contractions on a scale of Banach spaces
- Hamiltonian and Lagrangian flows on center manifolds with applications to elliptic variational problems
- Wave-solutions of reversible systems and applications
- Zentrumsmannigfaltigkeiten bei elliptischen Differentialgleichungen
- Existence and uniqueness for an equation of mixed type in a rectangle
- Admissibility Conditions for Shocks in Conservation Laws that Change Type
- Weak shock wave solutions in plane transonic flow