Stable hyperbolic singularities for three-phase flow models in oil reservoir simulation
From MaRDI portal
Publication:1200451
DOI10.1007/BF00047553zbMath0801.35080MaRDI QIDQ1200451
Publication date: 16 January 1993
Published in: Acta Applicandae Mathematicae (Search for Journal in Brave)
Shocks and singularities for hyperbolic equations (35L67) Hyperbolic conservation laws (35L65) Degenerate hyperbolic equations (35L80)
Related Items
Universality of Riemann solutions in porous media ⋮ Three-phase immiscible displacement in heterogeneous petroleum reservoirs ⋮ LAX SHOCKS IN MIXED-TYPE SYSTEMS OF CONSERVATION LAWS ⋮ Bifurcation under parameter change of Riemann solutions for nonstrictly hyperbolic systems ⋮ On a universal structure for immiscible three-phase flow in virgin reservoirs ⋮ RIEMANN SOLUTIONS FOR VERTICAL FLOW OF THREE PHASES IN POROUS MEDIA: SIMPLE CASES
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Riemann problems requiring a viscous profile entropy condition
- Hyperbolic systems of conservation laws II
- On the Strict Hyperbolicity of the Buckley–Leverett Equations for Three-Phase Flow in a Porous Medium
- Transitional Waves for Conservation Laws
- On the riemann problem for a prototype of a mixed type conservation law
- The classification of 2 × 2 systems of non-strictly hyperbolic conservation laws, with application to oil recovery
- The Riemann Problem Near a Hyperbolic Singularity: The Classification of Solutions of Quadratic Riemann Problems I
- The Riemann Problem Near a Hyperbolic Singularity II
- The Riemann Problem Near a Hyperbolic Singularity III
- Conservation Laws of Mixed Type Describing Three-Phase Flow in Porous Media