Area functionals and Godbillon-Vey cocycles
DOI10.5802/aif.1298zbMath0759.57019OpenAlexW2325002244MaRDI QIDQ1203375
Publication date: 8 February 1993
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_1992__42_1-2_421_0
group of diffeomorphisms of the circleGodbillon-Vey classarea functionalsGodbillon-Vey 2-dimensional cohomology classLipschitz homeomorphisms of the circle
Integration of real functions of several variables: length, area, volume (26B15) Cohomology of classifying spaces for pseudogroup structures (Spencer, Gelfand-Fuks, etc.) (58H10) Foliations in differential topology; geometric theory (57R30) Classifying spaces for foliations; Gelfand-Fuks cohomology (57R32) Functions of bounded variation, generalizations (26A45)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the foliated products of class \(C^ 1\)
- Sur l'invariance topologique de la classe de Godbillon-Vey. (On the topological invariance of the Godbillon-Vey class.)
- Sur un groupe remarquable de difféomorphismes du cercle. (On a remarkable group of the diffeomorphisms of the circle)
- Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. (On smooth conjugacy of diffeomorphisms of the circle with rotations)
- Commutators of diffeomorphisms. II
- Integrability in codimension 1
- Homological and dynamical study on certain groups of Lipschitz homeomorphisms of the circle
- Differentiability, rigidity and Godbillon-Vey classes for Anosov flows
- The vanishing of the homology of certain groups of homeomorphisms
- Classifying Spaces for Foliations with Isolated Singularities
- Foliations and groups of diffeomorphisms
- Noncobordant foliations of 𝑆³