Some examples of torsion in the Griffiths group
From MaRDI portal
Publication:1204234
DOI10.1007/BF01444739zbMath0790.14006OpenAlexW2041758930MaRDI QIDQ1204234
Publication date: 3 March 1993
Published in: Mathematische Annalen (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/164980
Related Items
On the computation of the cycle class map for nullhomologous cycles over the algebraic closure of a finite field, On the structure of étale motivic cohomology, Lefschetz theorems for torsion algebraic cycles in codimension 2, Torsion cohomology classes and algebraic cycles on complex projective manifolds, On the image of the 𝑙-adic Abel-Jacobi map for a variety over the algebraic closure of a finite field
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Griffiths' infinitesimal invariant and the Abel-Jacobi map
- Groupes de Chow et K-théorie de variétés sur un corps fini
- Torsion dans le groupe de Chow de codimension deux
- Complete intersections with middle Picard number 1 defined over \({\mathbb{Q}}\)
- A note on a theorem of Griffiths on the Abel-Jacobi map
- Rigidité des groupes de Chow. (Rigidity of the Chow groups)
- Analytic cycles on complex manifolds
- Relations between \(K_2\) and Galois cohomology
- A classical invitation of algebraic numbers and class fields. With two appendices by Olga Taussky: ``Artin's 1932 Göttingen lectures on class field theory and ``Connections between algebraic number theory and integral matrices.
- Double solids
- La conjecture de Weil. I
- Théoremes de finitude en cohomologie galoisienne
- Endomorphisms of Abelian varieties over finite fields
- Hodge's general conjecture is false for trivial reasons
- On the periods of certain rational integrals. I, II
- Galois properties of points of finite order of elliptic curves
- $ K$-COHOMOLOGY OF SEVERI-BRAUER VARIETIES AND THE NORM RESIDUE HOMOMORPHISM
- Algebraic cycles and values of L-functions.
- An Explicit Algorithm for Computing the Picard Number of Certain Algebraic Surfaces
- A Finiteness Theorem in the Galois Cohomology of Algebraic Number Fields
- Simple Factors of the Jacobian of a Fermat Curve and the Picard Number of a Product of Fermat Curves
- On the computation of the cycle class map for nullhomologous cycles over the algebraic closure of a finite field
- Abelian varieties over finite fields