Asymptotic stability of Schrödinger semigroups on \(L^ 1(\mathbb{R}^ N)\)
From MaRDI portal
Publication:1204261
DOI10.1007/BF02570850zbMath0761.47019MaRDI QIDQ1204261
Wolfgang Arendt, Philippe Benilan, Charles J. K. Batty
Publication date: 3 March 1993
Published in: Mathematische Zeitschrift (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/174378
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Groups and semigroups of linear operators (47D03)
Related Items
Asymptotics of evolution equations beyond Banach spaces ⋮ Some spectral properties of recurrent semigroups ⋮ A probabilistic approach to bounded/positive solutions for Schrödinger operators with certain classes of potentials ⋮ Partial differential equations. Transl. from the Russian ⋮ A probabilistic approach to the Liouville property for Schrödinger operators with an application to infinite configurations of balls ⋮ Absorption semigroups and Dirichlet boundary conditions
Cites Work
- One-parameter semigroups of positive operators
- On the \(L_ p\)-spectrum of Schrödinger operators
- Asymptotic stability of Schrödinger semigroups: Path integral methods
- Schrödinger semigroups
- Tauberian Theorems and Stability of One-Parameter Semigroups
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item