Construction of graded covariant \(GL(m/n)\) modules using tableaux
From MaRDI portal
Publication:1204332
DOI10.1023/A:1022424304176zbMath0776.05099OpenAlexW48616678MaRDI QIDQ1204332
Trevor A. Welsh, Ronald C. King
Publication date: 15 March 1993
Published in: Journal of Algebraic Combinatorics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1023/a:1022424304176
Related Items (6)
Diamond cone for \({{\mathfrak{sl}}}(m,n)\) ⋮ Quantum immanants, double Young–Capelli bitableaux and Schur shifted symmetric functions ⋮ Construction of graded covariant \(GL(m/n)\) modules using tableaux ⋮ Jeu de taquin and diamond cone for Lie (super)algebras ⋮ Diamond cone for \(\mathfrak {sl}(m/1)\) ⋮ The weighted super Bergman kernels over the supermatrix spaces
Cites Work
- Unnamed Item
- Unnamed Item
- Polynomial representations of \(GL_n\)
- Construction of graded covariant \(GL(m/n)\) modules using tableaux
- Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras
- Kac–Dynkin diagrams and supertableaux
- Construction of Sp-modules by tableaux
- Diagram and superfield techniques in the classical superalgebras
- Dimension and character formulas for Lie supergroups
- Construction of orthogonal group modules using tableaux
This page was built for publication: Construction of graded covariant \(GL(m/n)\) modules using tableaux