Type-II conjecture is true for finite \(\mathcal J\)-trivial monoids
DOI10.1016/0021-8693(92)90141-8zbMath0773.20029OpenAlexW1986686753WikidataQ123017095 ScholiaQ123017095MaRDI QIDQ1204565
Karsten Henckell, John L. Rhodes
Publication date: 29 March 1993
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0021-8693(92)90141-8
idempotentsfinite groupfinite monoidcomputable functionrelational morphismconstructible type-II elementspower monoidstrong type-II conjectureweak type-II conjecture
General structure theory for semigroups (20M10) Varieties and pseudovarieties of semigroups (20M07) Free semigroups, generators and relations, word problems (20M05) Mappings of semigroups (20M15)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Categories as algebra: An essential ingredient in the theory of monoids
- Reduction theorem for the type-II conjecture for finite monoids
- On the equation \(x^ t=x^{t+q}\) in categories
- On a conjecture of Rhodes
- Improved lower bounds for the complexity of finite semigroups
- Lower bounds for complexity of finite semigroups
- Semigroups whose idempotents form a subsemigroup
- On finite 0-simple semigroups and graph theory
This page was built for publication: Type-II conjecture is true for finite \(\mathcal J\)-trivial monoids