Properties of compact complex manifolds carrying closed positive currents

From MaRDI portal
Publication:1204885

DOI10.1007/BF02921329zbMath0784.32009OpenAlexW2048336110MaRDI QIDQ1204885

Shanyu Ji, Bernard Shiffman

Publication date: 1 April 1993

Published in: The Journal of Geometric Analysis (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1007/bf02921329




Related Items

GEOMETRY OF HERMITIAN MANIFOLDSA differential geometric property of big line bundlesCorrenti positive: Uno strumento per l’analisi globale su varietà complesseBergman Kernel Asymptotics and a Pure Analytic Proof of the Kodaira Embedding TheoremA class of balanced manifoldsOn the volume of a pseudo-effective class and semi-positive properties of the Harder–Narasimhan filtration on a compact Hermitian manifoldON THE VOLUME OF A LINE BUNDLEMoishezon deformations of manifolds in Fujiki class \(\mathcal{C} \)The global moduli theory of symplectic varietiesOn tamed almost complex four-manifoldsDeformation limits of projective manifolds: Hodge numbers and strongly Gauduchon metricsGeneralized Bergman kernels on symplectic manifoldsLocal Demailly-Bouche's holomorphic morse inequalitiesGlobal Torelli theorem for irreducible symplectic orbifoldsEffective results for complex hyperbolic manifoldsSpecial metrics on compact complex manifoldsGrowth of balls of holomorphic sections and energy at equilibriumCompact complex threefolds which are Kähler outside a smooth rational curveSur des variétés de Moishezon dont le groupe de Picard est de rang unOn Grauert-Riemenschneider type criteriaBook Review: Holomorphic Morse inequalities and Bergman kernelsCourants kählériens et surfaces compactes. (Kähler currents and compact surfaces)Deformation limit and bimeromorphic embedding of Moishezon manifoldsImage of analytic hypersurfaces. II



Cites Work