Numerical determination of the continued fraction expansion of the rotation number
From MaRDI portal
Publication:1207223
DOI10.1016/0167-2789(92)90211-5zbMath0761.58036OpenAlexW1965156150WikidataQ59184919 ScholiaQ59184919MaRDI QIDQ1207223
Publication date: 1 April 1993
Published in: Physica D (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0167-2789(92)90211-5
Topological dynamics (37B99) Continued fractions and generalizations (11J70) Local and nonlocal bifurcation theory for dynamical systems (37G99)
Related Items (8)
The numerical approximation of the rotation number of planar maps ⋮ Rigorous enclosures of rotation numbers by interval methods ⋮ Delayed feedback control and phase reduction of unstable quasi-periodic orbits ⋮ Computation of derivatives of the rotation number for parametric families of circle diffeomorphisms ⋮ On the numerical computation of Diophantine rotation numbers of analytic circle maps ⋮ Effective bounds for the measure of rotations ⋮ Numerical computation of rotation numbers of quasi-periodic planar curves ⋮ Stabilization Control of Quasi-periodic Orbits
Cites Work
- Nonlinear oscillations, dynamical systems, and bifurcations of vector fields
- Functional equations for circle homeomorphisms with golden ratio rotation number
- A new proof of M. Herman's theorem
- On the numerical approximation of the rotation number
- Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. (On smooth conjugacy of diffeomorphisms of the circle with rotations)
- Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne
- Smooth conjugacy and renormalisation for diffeomorphisms of the circle
This page was built for publication: Numerical determination of the continued fraction expansion of the rotation number