On the standard \(L\)-function for \(G_ 2\)
From MaRDI portal
Publication:1210405
DOI10.1215/S0012-7094-93-06915-3zbMath0777.11016OpenAlexW1527251327MaRDI QIDQ1210405
Publication date: 8 December 1993
Published in: Duke Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1215/s0012-7094-93-06915-3
Eisenstein seriesautomorphic representationsRankin-Selberg integralsimple polestandard \(L\)- function of \(G_ 2\)
Related Items (12)
A tower of theta correspondences for \(G_ 2\) ⋮ On the symmetric fourth power \(L\)-function of \(GL_ 2\) ⋮ On a converse theorem for \({\text{G}}_2\) over finite fields ⋮ The completed standard \(L\)-function of modular forms on \(G_2\) ⋮ The Rankin–Selberg integral with a non-unique model for the standard -function of ⋮ Uniqueness of certain Fourier-Jacobi models over finite fields ⋮ Stability of Rankin–Selberg gamma factors for Sp(2n),Sp̃(2n) and U(n,n) ⋮ A doubling integral for \(G_2\) ⋮ Periods and liftings: From \(G_2\) to \(C_3\) ⋮ Poles of the Standard -function of and the Rallis–Schiffmann Lift ⋮ On a Rankin-Selberg integral of the \(L\)-function for \(\widetilde{\mathrm{SL}}_2\times\mathrm{GL}_2\) ⋮ Modular forms on G 2 and their Standard L-Function
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Howe correspondences on a \(p\)-adic field
- The symmetric-square L-function attached to a cuspidal automorphic representation of \(GL_ 3\)
- A Rankin-Selberg integral for the adjoint representation of \(GL_ 3\)
- Symmetric square \(L\)-functions on \(GL(r)\)
- Automorphic forms on \(GL(3)\). I, II
- On the theory of Jacobi forms and Fourier-Jacobi coefficients of Eisenstein series
- The conjugate classes of Chevalley groups of type \((G_2)\)
- Rankin-Selberg Convolutions
- Rankin-Selberg convolutions for 𝑆𝑂_{2𝑙+1}×𝐺𝐿_{𝑛}: local theory
- Theta Correspondence Associated to G 2
- L-Functions for SOn x GLk.
- Rankin-Selberg Integrals for the Group G 2
This page was built for publication: On the standard \(L\)-function for \(G_ 2\)