The various aggregates of random polygons determined by random lines in a plane
From MaRDI portal
Publication:1211777
DOI10.1016/0001-8708(73)90110-2zbMath0292.60020OpenAlexW2078294920MaRDI QIDQ1211777
Publication date: 1973
Published in: Advances in Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0001-8708(73)90110-2
Geometric probability and stochastic geometry (60D05) Probability distributions: general theory (60E05)
Related Items
Cluster size distributions of extreme values for the Poisson-Voronoi tessellation, Intrinsic correlation in planar Poisson line processes, Shortest path distance in Manhattan Poisson line Cox process, Asymptotic Methods for Random Tessellations, Asymptotic properties of the maximum likelihood estimators of parameters of a spatial counting process modelling crystallization of polymers, Boundedness of Crofton's cell for the homogeneous Poisson process of geodesics in the hyperbolic plane, Cells with many facets in a Poisson hyperplane tessellation, EXPECTEDf‐VECTOR OF THE POISSON ZERO POLYTOPE AND RANDOM CONVEX HULLS IN THE HALF‐SPHERE, The proportion of triangles in a class of anisotropic Poisson line tessellations, The stochastic geometry of polymer crystallization processes1, Planar line processes for void and density statistics in thin stochastic fibre networks, Monte carlo estimates of the distributions of the random polygons determined by random lines in a plane, Random line tessellations of the plane: Statistical properties of many-sided cells, Poisson-saddlepoint approximation for Gibbs point processes with infinite-order interaction: in memory of Peter Hall, Thin-shell concentration for zero cells of stationary Poisson mosaics, Empirical (Typical) Cells of the Poisson Medial Tessellation, Precise formulae for the distributions of the principal geometric characteristics of the typical cells of a two-dimensional Poisson-Voronoi tessellation and a Poisson line process, Proof of David Kendall's conjecture concerning the shape of large random polygons, Mean Values of Weighted Cells of Stationary Poisson Hyperplane Tessellations of IRd, Limit theorems for the typical Poisson-Voronoi cell and the Crofton cell with a large inradius, On a conjecture of D. G. Kendall concerning the planar Crofton cell and on its Brownian counterpart, Unnamed Item
Cites Work
- On the homogeneous planar Poisson point process
- Poisson flats in Euclidean spaces Part II: Homogeneous Poisson flats and the complementary theorem
- Monte carlo estimates of the distributions of the random polygons determined by random lines in a plane
- AVERAGES FOR POLYGONS FORMED BY RANDOM LINES
- RANDOM POLYGONS DETERMINED BY RANDOM LINES IN A PLANE, II
- ZufÄllige konvexe Polygone in einem Ringgebiet
- Some results in probabilistic geometry
- Poisson flats in Euclidean spaces Part I: A finite number of random uniform flats
- Isotropic random simplices
- Random Distribution of Lines in a Plane
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item