Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

A Saint-Venant principle for the gradient in the Neumann problem

From MaRDI portal
Publication:1215869
Jump to:navigation, search

DOI10.1007/BF01591502zbMath0302.31005OpenAlexW2076590533MaRDI QIDQ1215869

Matias J. Turteltaub, Cornelius O. Horgan, Lewis T. Wheeler

Publication date: 1975

Published in: ZAMP. Zeitschrift für angewandte Mathematik und Physik (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1007/bf01591502


Mathematics Subject Classification ID

Boundary value problems for second-order elliptic equations (35J25) A priori estimates in context of PDEs (35B45) Boundary value and inverse problems for harmonic functions in two dimensions (31A25)


Related Items

Spatial decay estimates for the heat equation via the maximum principle, A note on the spatial decay of a minimal surface over a semi-infinite strip, Exponential decay estimates for second-order quasi-linear elliptic equations, Maximum principles and pointwise error estimates for torsion of shells of revolution



Cites Work

  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Formole di maggiorazione nel problema di Dirichlet per le funzioni armoniche
  • A Saint-Venant principle for a class of second-order elliptic boundary value problems
  • Energy inequalities and error estimates for torsion of elastic shells of revolution
Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:1215869&oldid=13286061"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 31 January 2024, at 07:48.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki