A Saint-Venant principle for the gradient in the Neumann problem
From MaRDI portal
Publication:1215869
DOI10.1007/BF01591502zbMath0302.31005OpenAlexW2076590533MaRDI QIDQ1215869
Matias J. Turteltaub, Cornelius O. Horgan, Lewis T. Wheeler
Publication date: 1975
Published in: ZAMP. Zeitschrift für angewandte Mathematik und Physik (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf01591502
Boundary value problems for second-order elliptic equations (35J25) A priori estimates in context of PDEs (35B45) Boundary value and inverse problems for harmonic functions in two dimensions (31A25)
Related Items
Spatial decay estimates for the heat equation via the maximum principle, A note on the spatial decay of a minimal surface over a semi-infinite strip, Exponential decay estimates for second-order quasi-linear elliptic equations, Maximum principles and pointwise error estimates for torsion of shells of revolution
Cites Work