Abstract Plancherel theorems and a Frobenius reciprocity theorem

From MaRDI portal
Publication:1217210

DOI10.1016/0022-1236(75)90023-3zbMath0305.22016OpenAlexW1991758922MaRDI QIDQ1217210

Richard C. Penney

Publication date: 1975

Published in: Journal of Functional Analysis (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1016/0022-1236(75)90023-3




Related Items (22)

Finite multiplicity theorems for induced representations of semisimple Lie groups and their applications to generalized Gelfand-Graev representationsInvariant differential operators on a semisimple symmetric space and finite multiplicities in a Plancherel formulaThe principal series for a reductive symmetric space. I. $H$-fixed distribution vectorsModules simples sur une algèbre de Lie nilpotente contenant un vecteur propre pour une sous-algèbreMonomial representations of certain exponential Lie groupsA unified approach to concrete Plancherel theory of homogeneous spacesUnnamed ItemA proof of the polynomial conjecture for nilpotent Lie groups monomial representationsAnalysis of the anomalous diffusion in comb structure with absorbing boundary conditionsExtensions of positive definite integral kernels on the Heisenberg groupOn the Spectra of Compact NilmanifoldsPlancherel theory for real spherical spaces: Construction of the Bernstein morphismsFrobenius Reciprocity and Extensions of Nilpotent Lie GroupsHolomorphically induced representations of some solvable Lie groupsDistributions of positive type and representations of Lie groupsSpherical distributions on nilmanifoldsSpectral decomposition of invariant differential operators on certain nilpotent homogeneous spacesThe Penney-Fujiwara Plancherel formula for Gelfand pairsAnalyse harmonique sur les espaces symétriques nilpotentsSemi-invariant vectors associated with holomorphically induced representations of exponential Lie groupsGroup algebras with a unique C*-normMultiplicité un pour les espaces symétriques exponentiels



Cites Work


This page was built for publication: Abstract Plancherel theorems and a Frobenius reciprocity theorem