Degree of \(L_1\) approximation to integrable functions by modified Bernstein polynomials
From MaRDI portal
Publication:1217287
DOI10.1016/0021-9045(75)90015-5zbMath0305.41009OpenAlexW2053177338MaRDI QIDQ1217287
Publication date: 1975
Published in: Journal of Approximation Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0021-9045(75)90015-5
Abstract approximation theory (approximation in normed linear spaces and other abstract spaces) (41A65) Approximation by polynomials (41A10) Rate of convergence, degree of approximation (41A25)
Related Items
The strong converse inequality for Bernstein-Kantorovich operators ⋮ On a limit theorem for some modified operators ⋮ \(L_p\)-approximation by Kantorovic operators ⋮ \(L^p\) approximation strategy by positive linear operators ⋮ The local \(L_ 1\) saturation class of the method of integrated Meyer- Koenig and Zeller operators ⋮ Asymptotic formulae for multivariate Kantorovich type generalized sampling series ⋮ Güteabschätzungen für den Kantorovic-Operator in der \(L_1\)-Norm ⋮ Die Gute der \(L_p\)-Approximation durch Kantorovic-Polynome ⋮ Güteabschätzungen für den Kantorovic-Operator in der \(L_1\)-Norm ⋮ Approximation by Means of Kantorovich-Stancu Type Operators ⋮ Uniform boundedness of Kantorovich operators in variable exponent Lebesgue spaces
Cites Work