The Levi problem for domains spread over locally convex spaces with a finite dimensional Schauder decomposition
DOI10.5802/aif.638zbMath0309.32013OpenAlexW2055682686MaRDI QIDQ1218942
Publication date: 1976
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_1976__26_4_207_0
Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces (46B15) Holomorphic, polynomial and rational approximation, and interpolation in several complex variables; Runge pairs (32E30) Pseudoconvex domains (32T99) Measures, integration, derivative, holomorphy (all involving infinite-dimensional spaces) (46G99)
Related Items (14)
Cites Work
- Weak sequential convergence in the dual of a Banach space does not imply norm convergence
- The Levi problem in certain infinite dimensional vector spaces
- Einführung in die Theorie der lokalkonvexen Räume
- Domains of \(\tau\)-holomorphy in a separable Banach space
- Prolongement analytique en dimension infinie. (Analytic extension in infinite dimension)
- Über analytische Fortsetzung in Banachräumen
- Holomorphic functions on locally convex topological vector spaces. II: Pseudo convex domains
- Surjective limits of locally convex spaces and their application to infinite dimensional holomorphy
- Le problème de Lévi dans certains espaces vectoriels topologiques localement convexes
- The Approximation Property Does Not Imply the Bounded Approximation Property
- Introduction to the Theory of Bases
- Banach spaces with finite dimensional expansions of identity and universal bases of finite dimensional subspaces
- A local factorization of analytic functions and its applications
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: The Levi problem for domains spread over locally convex spaces with a finite dimensional Schauder decomposition