Finite groups with intrinsic 2-components of type \(\hat A_n\)
From MaRDI portal
Publication:1220141
DOI10.1016/0021-8693(75)90115-5zbMath0313.20007OpenAlexW2154852161MaRDI QIDQ1220141
Publication date: 1975
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0021-8693(75)90115-5
Special subgroups (Frattini, Fitting, etc.) (20D25) Finite simple groups and their classification (20D05)
Related Items (11)
Finite groups with unbalancing 2-components of \(\{\hat L_3(4),\text{He}\}\)-type ⋮ PSL(2,q) type 2-components and the unbalanced group conjecture ⋮ Finite groups ⋮ The classification of finite simple groups I. Simple groups and local analysis ⋮ Endliche einfache Gruppen mit einer zentralisatorgleichen elementar abelschen Untergruppe von der Ordnung 16 ⋮ A note on Solvable 2-Components of finite groups ⋮ On the quadratic pairs ⋮ Standard components of alternating type. I ⋮ Standard components of alternating type. II ⋮ 2-Signalizers in finite groups of alternating type ⋮ Quadratic pairs for odd primes
Cites Work
- Unnamed Item
- On finite groups of component type
- 2-fusion in finite groups
- On the centralizers of involutions in finite groups. II
- On the alternating groups IV
- A characterization of the McLaughlin's simple group
- Evidence for a new finite simple group
- On the automorphism group of a finite group having no non-identity normal subgroups of odd order
- Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt fest läßt
- On finite groups with Sylow 2-subgroups of type \(\hat A_n,\;n=8,9,10 \) and \(11\)
- The \(\pi\)-layer of a finite group
- 2-signalizer functors on finite groups
- The maximal subgroups of Conway's group C\(_3\) and McLaughlin's group
- Weakly embedded 2-local subgroups of finite groups
- A Condition for the Existence of a Strongly Embedded Subgroup
- The nonexistence of a certain type of finite simple group
This page was built for publication: Finite groups with intrinsic 2-components of type \(\hat A_n\)