Über die Rayleighsche Vermutung: Unter allen Platten von gegebener Fläche und konstanter Dichte und Elastizität hat die kreisförmige den tiefsten Grundton
From MaRDI portal
Publication:1221049
DOI10.1007/BF02417012zbMath0315.35036OpenAlexW1982443895MaRDI QIDQ1221049
Publication date: 1975
Published in: Annali di Matematica Pura ed Applicata. Serie Quarta (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf02417012
Lua error in Module:PublicationMSCList at line 37: attempt to index local 'msc_result' (a nil value).
Related Items (9)
On Rayleigh's conjecture for the clamped plate and its generalization to three dimensions ⋮ Minimizing eigenvalues for inhomogeneous rods and plates ⋮ Rellich type identities for eigenvalue problems and application to the Pompeiu problem ⋮ Minimization of the buckling load of a clamped plate with perimeter constraint ⋮ Towards the optimality of the ball for the Rayleigh conjecture concerning the clamped plate ⋮ Optimality conditions for the buckling of a clamped plate ⋮ Unnamed Item ⋮ A few shape optimization results for a biharmonic Steklov problem ⋮ Optimal shape of a domain which minimizes the first buckling eigenvalue
Cites Work
This page was built for publication: Über die Rayleighsche Vermutung: Unter allen Platten von gegebener Fläche und konstanter Dichte und Elastizität hat die kreisförmige den tiefsten Grundton