Harmonic and quasiharmonic degeneracy of Riemannian manifolds
From MaRDI portal
Publication:1221203
DOI10.2748/tmj/1178240938zbMath0316.31007OpenAlexW2072000489WikidataQ115227190 ScholiaQ115227190MaRDI QIDQ1221203
Publication date: 1975
Published in: Tôhoku Mathematical Journal. Second Series (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.2748/tmj/1178240938
Biharmonic and polyharmonic equations and functions in higher dimensions (31B30) Global Riemannian geometry, including pinching (53C20)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Negative quasiharmonic functions
- Bounded polyharmonic functions and the dimension of the manifold
- Completeness and existence of bounded biharmonic functions on a Riemannian manifold
- Behavior of biharmonic functions on Wiener's and Royden's compactifications
- Generators of the space of bounded biharmonic functions
- Polyharmonic classification of Riemannian manifolds
- The class of \((p,q)\)-biharmonic functions
- Existence of Dirichlet finite biharmonic functions on the Poincaré 3-ball
- Parabolicity and existence of bounded biharmonic functions
- Counterexamples in the biharmonic classification of Riemannian 2-manifolds
- Radial quasiharmonic functions
- Dirichlet finite biharmonic functions with Dirichlet finite Laplacians
- Über das asymptotische Verhalten der Lösungen gewisser linearer gewöhnlicher Differentialgleichungen
- Behavior of solutions of linear second order differential equations
- Quasiharmonic degeneracy of Riemannian $N$-manifolds
- Dirichlet finite biharmonic functions on the Poincaré N-ball.
- Harmonic $L^{p}$-functions on Riemannian manifolds
- Riemannian Manifolds of Dimension N ⩾ 4 without Bounded Biharmonic Functions
- Parabolicity and Existence of Dirichlet Finite Biharmonic Functions
- Harmonic and biharmonic degeneracy
- COMPLETENESS AND FUNCTION-THEORETIC DEGENERACY OF RIEMANNIAN SPACES
- Quasiharmonic Classification of Riemannian Manifolds
- A Property of Biharmonic Functions with Dirichlet Finite Laplacians.
- Positive harmonic functions and biharmonic degeneracy
- Biharmonic classification of Riemannian manifolds
- N-manifolds carrying bounded but no Dirichlet finite harmonic functions