Extremal edge problems for graphs with given hyperoctahedral automorphism group
From MaRDI portal
Publication:1222171
DOI10.1016/0012-365X(76)90057-1zbMath0318.05105MaRDI QIDQ1222171
Gary Haggard, Donald McCarthy, Andrew Wohlgemuth
Publication date: 1976
Published in: Discrete Mathematics (Search for Journal in Brave)
Finite automorphism groups of algebraic, geometric, or combinatorial structures (20B25) Graphs and abstract algebra (groups, rings, fields, etc.) (05C25) Graph theory (05C99)
Related Items (5)
Vertex-minimal graphs with dihedral symmetry. I. ⋮ Vertex-minimal planar graphs with a prescribed automorphism group ⋮ Vertex-minimal planar graphs with cyclic 2-group symmetry ⋮ Vertex-minimal graphs with nonabelian \(\mathbf{2}\)-group symmetry ⋮ A Stability Theorem for Minimum Edge Graphs with Given Abstract Automorphism Group
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Reguläre Graphen 3., 4. und 5. Grades mit vorgegebenen abstrakten Automorphismengruppen, Farbenzahlen und Zusammenhängen
- Reguläre Graphen beliebigen Grades mit vorgegebenen Eigenschaften
- Parallel concepts in graph theory
- The uniqueness of a certain graph
- Representations of permutation groups. Part I
- The least number of edges for graphs having dihedral automorphism group
- Graphs with Given Group and Given Graph-Theoretical Properties
- A Stability Theorem for Minimum Edge Graphs with Given Abstract Automorphism Group
- Extrema concerning asymmetric graphs
- The least number of edges for graphs having symmetric automorphism group
- On the cycle index of a product of permutation groups
- On the groups of repeated graphs
- Graphs of Degree Three with a Given Abstract Group
This page was built for publication: Extremal edge problems for graphs with given hyperoctahedral automorphism group