An extension of Becker's univalence condition
From MaRDI portal
Publication:1222252
DOI10.1007/BF01431098zbMath0318.30015MaRDI QIDQ1222252
Publication date: 1976
Published in: Mathematische Annalen (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/162828
Related Items (18)
Becker type univalence conditions for harmonic mappings ⋮ \(p\)-subordination chains and \(p\)-valence criteria ⋮ Univalence criteria for meromorphic functions and quasiconformal extensions ⋮ Avkhadiev-Becker type \(p\)-valence conditions for harmonic mappings of a disc ⋮ Univalence criteria starting from the method of Loewner chains ⋮ LOEWNER CHAINS AND UNIVALENCE CRITERIA RELATED WITH RUSCHEWEYH AND SĂLĂGEAN DERIVATIVES ⋮ Boundedness, univalence and quasiconformal extension of Robertson functions ⋮ Univalence criterion for meromorphic functions and Loewner chains ⋮ Sufficient conditions for the finite-valence of analytic functions and their applications ⋮ p-Subordination chains and p-valence integral operators ⋮ Avkhadiev-Becker type univalence conditions for biharmonic mappings ⋮ Löwner chains with complex leading coefficient ⋮ A generalization of Ruscheweyh's univalence criterion ⋮ Avkhadiev-Backer type \(p\)-valent conditions for biharmonic functions ⋮ Sufficient conditions for univalence and quasiconformal extensions ⋮ Univalence criteria and quasiconformal extension of a general integral operator ⋮ Explicit quasiconformal extensions and Löwner chains ⋮ Some sufficient conditions for the univalence of an integral operator
Cites Work
- Univalent functions \(f(z)\) for which \(zf'(z)\) is spirallike
- Löwnersche Differentialgleichung und Schlichtheitskriterien
- On a Subclass of Bazilevic Functions
- Univalence of the Integral of f ′(z)λ
- Über die Lösungsstruktur einer Differentialgleichung in der konformen Abbildung.
- Über die Subordination analytischer Funktionen.
- Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen.
This page was built for publication: An extension of Becker's univalence condition