\(L_p\)-\(L_{p'}\)-estimates for Fourier integral operators related to hyperbolic equations
From MaRDI portal
Publication:1225227
DOI10.1007/BF01488969zbMath0325.35009MaRDI QIDQ1225227
Publication date: 1977
Published in: Mathematische Zeitschrift (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/172472
existenceuniquenessFourier integral operatorsa-priori estimatessemilinear hyperbolic equations with variable coefficients
First-order nonlinear hyperbolic equations (35L60) A priori estimates in context of PDEs (35B45) Fourier integral operators applied to PDEs (35S30)
Related Items
Bounds for singular fractional integrals and related Fourier integral operators ⋮ Strichartz Estimates for Non-selfadjoint Operators and Applications ⋮ Linear operators, Fourier integral operators and \(k\)-plane transforms on rearrangement-invariant quasi-Banach function spaces ⋮ 𝐿^{𝑝}→𝐿^{𝑞} regularity of Fourier integral operators with caustics ⋮ Asymptotic behavior of waves ⋮ Blow-up of solutions to critical semilinear wave equations with variable coefficients ⋮ Two endpoint bounds for generalized Radon transforms in the plane ⋮ The lifespan of solutions to nonlinear systems of a high-dimensional wave equation ⋮ Uniqueness in Cauchy Problems for Hyperbolic Differential Operators ⋮ Estimates for the wave kernel near focal points on compact manifolds ⋮ Decay Estimates for the Wave Equation with Potential ⋮ Norm estimates in Besov and Lizorkin-Triebel spaces for the solutions of second-order linear hyperbolic equations ⋮ Sharp \(L^p\)-Carleman estimates and unique continuation
Cites Work
- Unnamed Item
- On \(L_2-L_{p'}\) estimates for the wave-equation
- Opérateurs hyperboliques à caractéristiques de multiplicité constante
- Applications de la théorie des espaces d'interpolation dans l'analyse harmonique
- The spectral function of an elliptic operator
- A priori estimates for the wave equation and some applications
- Besov spaces in theory of approximation
- Fourier integral operators. I
- Spaces of distributions of Besov type on Euclidean n-space. Duality, interpolation
- Fourier transforms of surface-carried measures and differentiability of surface averages
- The non-existence of $L^{p}$-estimates for certain translation-invariant operators
- Convolutions with Kernels Having Singularities on a Sphere