Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

Quasi-bounded and singular solutions of \(\Delta u=pu\) on open Riemann surfaces

From MaRDI portal
Publication:1225710
Jump to:navigation, search

DOI10.1007/BF02786816zbMath0326.31001MaRDI QIDQ1225710

Wellington H. Ow

Publication date: 1975

Published in: Journal d'Analyse Mathématique (Search for Journal in Brave)



Mathematics Subject Classification ID

Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs (35B05) Harmonic, subharmonic, superharmonic functions in two dimensions (31A05) Second-order elliptic equations (35J15) Differentials on Riemann surfaces (30F30)




Cites Work

  • Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel
  • Nonnegative solutions of \(\Delta u=Pu\) on open Riemann surfaces
  • A maximal regular boundary for solutions of elliptic differential equations
  • Relations between Wiener and Martin boundaries
  • Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann
  • The space of non-negative solutions of the equation $\Delta u=pu$ on a Riemann surface
  • Compactifications of Harmonic Spaces
  • On a criterion of quasi-boundedness of positive harmonic functions
  • On Wiener compactification of a Riemann surface associated with the equation $\Delta u = pu$
  • Classification of Riemann surfaces
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:1225710&oldid=13304487"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 31 January 2024, at 08:20.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki