A survey of some finite element methods proposed for treating the Dirichlet problem
From MaRDI portal
Publication:1233634
DOI10.1016/0001-8708(75)90150-4zbMath0346.49031OpenAlexW2055746634MaRDI QIDQ1233634
Publication date: 1975
Published in: Advances in Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0001-8708(75)90150-4
Numerical mathematical programming methods (65K05) Discrete approximations in optimal control (49M25)
Related Items
Interior Maximum Norm Estimates for Finite Element Methods ⋮ Preconditioning nonconforming finite element methods for treating Dirichlet boundary conditions. I ⋮ Preconditioning nonconforming finite element methods for treating Dirichlet boundary conditions. II ⋮ Optimal maximum norm error estimates for some finite element methods for treating the Dirichlet problem ⋮ Higher Order Local Accuracy by Averaging in the Finite Element Method
Cites Work
- Unnamed Item
- New error bounds for the penalty method and extrapolation
- Piecewise Hermite interpolation in one and two variables with applications to partial differential equations
- On the finite element method
- Approximation des problèmes aux limites non homogènes et régularité de la convergence
- Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. (On a variational principle for solving Dirichlet problems less boundary conditions using subspaces)
- The finite element method with Lagrangian multipliers
- Simplified Proofs of Error Estimates for the Least Squares Method for Dirichlet's Problem
- The Finite Element Method with Penalty
- Rate of Convergence Estimates for Nonselfadjoint Eigenvalue Approximations
- Projection Methods for Dirichlet's Problem in Approximating Polygonal Domains with Boundary-Value Corrections
- A Generalized Ritz-Least-Squares Method for Dirichlet Problems
- Rayleigh‐Ritz‐Galerkin methods for dirichlet's problem using subspaces without boundary conditions
- Triangular Elements in the Finite Element Method