A Dunford-Pettis theorem for \(L^1/H^{\infty\perp}\)
From MaRDI portal
Publication:1234876
DOI10.1016/0022-1236(77)90064-7zbMath0349.46047OpenAlexW2083836635MaRDI QIDQ1234876
Publication date: 1977
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0022-1236(77)90064-7
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Banach algebras of differentiable or analytic functions, (H^p)-spaces (46J15) Duality and reflexivity in normed linear and Banach spaces (46B10)
Related Items (4)
Reflexive subspaces of the space \(C^*_A\) ⋮ An extended Mooney-Havin theorem ⋮ Représentations d'opérateurs à valeurs dans \(L^1(X,\Sigma,\mu)\) ⋮ Some remarks on the Dunford-Pettis property
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Sur un théorème de Mooney rélatif aux fonctions analytiques bornees
- Theory of abstract Hardy spaces and the universal Hardy class
- A theorem on bounded analytic functions
- Shorter Notes: On Sequences Spanning a Complex l 1 Space
- A Characterization of Banach Spaces Containing l 1
- On Some Hypo-Dirichlet Algebras of Analytic Functions
- Another Theorem on Bounded Analytic Functions
- A Note on Enveloped Measures
- Linear Operations on Summable Functions
- Sur Les Applications Lineaires Faiblement Compactes D'Espaces Du Type C(K)
This page was built for publication: A Dunford-Pettis theorem for \(L^1/H^{\infty\perp}\)