The Korteweg-de Vries-Burgers equation

From MaRDI portal
Publication:1237514

DOI10.1016/0021-9991(77)90070-5zbMath0356.65107OpenAlexW2080510050MaRDI QIDQ1237514

Jose Canosa, Jenö Gazdag

Publication date: 1977

Published in: Journal of Computational Physics (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1016/0021-9991(77)90070-5



Related Items

Qualitative analysis to traveling wave solutions of Zakharov-Kuznetsov-Burgers equation and its damped oscillatory solutions, Travelling-wave solutions to the Korteweg-de Vries-Burgers equation, Exact solution in terms of elliptic functions for the Burgers --- Korteweg --- de Vries equation, Instability of oscillatory shock profile solutions of the generalized Burgers-KdV equation, Traveling waves to a Burgers-Korteweg-de Vries-type equation with higher-order nonlinearities, Traveling-wave solutions for Korteweg-de Vries-Burgers equations through factorizations, Lie symmetry analysis, soliton and numerical solutions of boundary value problem for variable coefficients coupled KdV-Burgers equation, Burgers-Korteweg-de Vries equation and its traveling solitary waves, A deep learning method for solving third-order nonlinear evolution equations, Dust-ion-acoustic solitary waves in magnetized plasmas with positive and negative ions: the role of electrons superthermality, Fourier expansion solution of the Korteweg-de Vries equation, Petrov-Galerkin methods for nonlinear dispersive waves, Asymptotic behavior of the generalized Korteweg-de Vries-Burgers equation, The Korteweg–de Vries–Burgers equation and its approximate solution, Numerical solution of K.D.V. equation, Exact solutions to the Korteweg-de Vries-Burgers equation, Approximate damped oscillatory solutions for generalized KdV-Burgers equation and their error estimates, An explicit finite-difference scheme with exact conservation properties, Unnamed Item, Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation, Exact solutions for a compound KdV-Burgers equation, Traveling waves in nonlinear media with dispersion, dissipation, and reaction, Convergence analysis of three-level Fourier pseudospectral method for Korteweg-de Vries Burgers equation, Septic B-spline method of the Korteweg-de Vries-Burgers equation, Nonlinear dynamics of the KdV-B equation and its biomedical applications, Well-posedness of the Ostrovsky-Hunter equation under the combined effects of dissipation and short-wave dispersion, Approximate damped oscillatory solutions for compound KdV-Burgers equation and their error estimates, Exact solutions to the KdV--Burgers' equation, Convergence of the Kuramoto-Sinelshchikov equation to the Burgers one, Shock wave solutions of the compound Burgers-Korteweg-de Vries equation, Symbolic computation of the Painlevé test for nonlinear partial differential equations using Maple, Asymptotic stability of monotone decreasing kink profile solitary wave solutions for generalized KdV-Burgers equation, On explicit exact solutions to the compound Burgers-KdV equation, Global existence and uniqueness of the solution for the fractional Schrödinger-KdV-Burgers system, Quartic B-spline Galerkin approach to the numerical solution of the KdVB equation, The concept of minimized integrated exponential error for low dispersion and low dissipation schemes, The remainder-effect analysis of finite difference schemes and the applications, Existence results for the Kudryashov–Sinelshchikov–Olver equation, A quintic B-spline finite elements scheme for the KdVB equation, A method for the integration in time of certain partial differential equations, Oscillatory instability of traveling waves for a KdV-Burgers equation, Several new types of finite-difference schemes for shallow-water equation with initial-boundary value and their numerical experiment, Conservation laws with vanishing nonlinear diffusion and dispersion11This work was partially carried out during a visit of the first author to the Istituto per le Applicazioni del Calcolo., A comparison between two different methods for solving KdV-Burgers equation, The Fourier pseudospectral method with a restrain operator for the Korteweg-de Vries equation



Cites Work