Topologies fines et compactifications associées à certains espaces de Dirichlet

From MaRDI portal
Publication:1238054

DOI10.5802/aif.673zbMath0357.31009OpenAlexW2333566362MaRDI QIDQ1238054

Denis Feyel, Arnaud De La Pradelle

Publication date: 1977

Published in: Annales de l'Institut Fourier (Search for Journal in Brave)

Full work available at URL: http://www.numdam.org/item?id=AIF_1977__27_4_121_0



Related Items

Schrödinger operators involving singular potentials and measure data, Nonlinear potentials in function spaces, Existence of solution for a system involving a singular-nonlocal operator, a singularity and a Radon measure, Complete classification of the positive solutions of \(-\Delta u+u^q\), Espaces de Sobolev gaussiens. (Gaussian Sobolev spaces), Potential Estimates and Quasilinear Parabolic Equations with Measure Data, On the equation \(-\Delta u + e^{u} - 1 = 0\) with measures as boundary data, Risk measuring under model uncertainty, Semilinear elliptic Schrödinger equations with singular potentials and absorption terms, Nonlinear boundary value problems relative to harmonic functions, Semilinear fractional elliptic equations involving measures, Positive solutions of a class of semilinear equations with absorption and Schrödinger equations, Quasilinear Lane-Emden equations with absorption and measure data, Construction d'un espace harmonique de Brelot associe à un espace de Dirichlet de type local verifiant une hypothèse d'hypoellipticite, Processus associes a une classe d'espaces de Banach fonctionnels, Nonlinear elliptic equations with measure valued absorption potentials, Singularités éliminables pour des équations semi-linéaires, Inequations variationnelles avec obstacles et espaces fonctionnels en theorie du potentiei, Boundary singularities of solutions of semilinear elliptic equations with critical Hardy potentials, Strong maximum principle for Schrödinger operators with singular potential



Cites Work