Inverse iteration for calculating the spectral radius of a non-negative irreducible matrix
From MaRDI portal
Publication:1238596
DOI10.1016/0024-3795(76)90029-XzbMath0359.65030OpenAlexW1984063140WikidataQ126778036 ScholiaQ126778036MaRDI QIDQ1238596
Publication date: 1976
Published in: Linear Algebra and its Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0024-3795(76)90029-x
Numerical computation of eigenvalues and eigenvectors of matrices (65F15) Positive matrices and their generalizations; cones of matrices (15B48) Ordered abelian groups, Riesz groups, ordered linear spaces (06F20)
Related Items (11)
On a class of methods for the computation of the spectral radius and the Perron vector of a nonnegative, irreducible matrix ⋮ A Positivity Preserving Inverse Iteration for Finding the Perron Pair of an Irreducible Nonnegative Third Order Tensor ⋮ Solving multi-linear systems with \(\mathcal {M}\)-tensors ⋮ Newton-noda iteration for finding the Perron pair of a weakly irreducible nonnegative tensor ⋮ On the Perron root and eigenvectors associated with a subshift of finite type ⋮ Two-step Noda iteration for irreducible nonnegative matrices ⋮ Noda iterations for generalized eigenproblems following Perron-Frobenius theory ⋮ Accurate computation of the smallest eigenvalue of a diagonally dominant $M$-matrix ⋮ Reguläre Zerlegung und Berechnung des Spektralradius nichtnegativer Matrizen ⋮ Inexact generalized Noda iterations for generalized eigenproblems ⋮ A positivity preserving inexact Noda iteration for computing the smallest eigenpair of a large irreducible \(M\)-matrix
Cites Work
- Unnamed Item
- Unnamed Item
- An elementary proof of the Hopf inequality for positive operators
- Bounds for Perron eigenvectors and subdominant eigenvalues of positive matrices
- Note on the computation of the maximal eigenvalue of a non-negative irreducible matrix
- Verfahren zur Berechnung des Spektralradius nichtnegativer irreduzibler Matrizen. II. (A method for calculating the spectral radius of non- negative irreducible matrices. II)
This page was built for publication: Inverse iteration for calculating the spectral radius of a non-negative irreducible matrix