Solution générale sur un groupe abelien de l'équation fonctionnelle \(f(x\ast f(y))=f(f(x)\ast y)\)
From MaRDI portal
Publication:1238944
DOI10.1007/BF01835648zbMath0359.39003MaRDI QIDQ1238944
Publication date: 1977
Published in: Aequationes Mathematicae (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/136649
Functional equations for functions with more general domains and/or ranges (39B52) Abelian groups (20K99)
Related Items
Equations fonctionnelles et recherche de sous-groupes, Stability problem for the composite type functional equations, Multiplicative symmetry and related functional equations, Error function inequalities, Inequalities connected with averaging operators. II, Functional equations on restricted domains, New results for the multiplicative symmetric equation and related conjecture, Characterization of groups of involutions by means of composite functional equations in two variables
Cites Work
- On the functional equation f(x+f(y))=f(x)f(y)
- Solution générale de l'équation fonctionnelle \(f[x+yf(x) = f(x)f(y)\)]
- On the general solution of the functional equation \(f(x+yf(x)) = f(x)f(y)\)
- Über die Funktionalgleichung \(f(1+x)+ f(1+f(x)) = 1\). (On the functional equation \(f(1+x)+ f(1+f(x)) = 1\))
- Sur l'equation fonctionnelle f[x+yf(x) = f(x)f(y)]
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item