On the relation between quadratic termination and convergence properties of minimization algorithms. Part I. Theory
From MaRDI portal
Publication:1241969
DOI10.1007/BF01389973zbMath0366.65027OpenAlexW93171880MaRDI QIDQ1241969
Publication date: 1977
Published in: Numerische Mathematik (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/132492
Numerical mathematical programming methods (65K05) Convex programming (90C25) Nonlinear programming (90C30)
Related Items (10)
Nonlinear conjugate gradient methods for the optimal control of laser surface hardening ⋮ A generalized conjugate gradient algorithm for minimization ⋮ On the stable global convergence of particular quasi-newton-methods ⋮ Quasi-Newton-Verfahren vom Rang-Eins-Typ zur Lösung unrestringierter Minimierungsprobleme. I: Verfahren und grundlegende Eigenschaften ⋮ Quasi-Newton-Verfahren vom Rang-Eins-Typ zur Lösung unrestringierter Minimierungsprobleme. II: n-Schritt-quadratische Konvergenz für Restart-Varianten ⋮ Superlinear convergence of symmetric Huang's class of methods ⋮ Unnamed Item ⋮ Imperfect conjugate gradient algorithms for extended quadratic functions ⋮ On the relation between quadratic termination and convergence properties of minimization algorithms. Part II. Applications ⋮ A derivative-based bracketing scheme for univariate minimization and the conjugate gradient method
Cites Work
- Alternative proofs of the convergence properties of the conjugate- gradient method
- Die Konvergenzordnung des Fletcher-Powell-Algorithmus
- Variable Metric Method for Minimization
- Self-Scaling Variable Metric (SSVM) Algorithms
- Self-Scaling Variable Metric (SSVM) Algorithms
- Convergence conditions for restarted conjugate gradient methods with inaccurate line searches
- Practical convergence conditions for the Davidon-Fletcher-Powell method
- On the convergence rate of imperfect minimization algorithms in Broyden'sβ-class
- Quasi-Newton Methods, Motivation and Theory
- Rate of Convergence of Several Conjugate Gradient Algorithms
- On the Local and Superlinear Convergence of Quasi-Newton Methods
- A Characterization of Superlinear Convergence and Its Application to Quasi-Newton Methods
- A Rapidly Convergent Descent Method for Minimization
- Function minimization by conjugate gradients
- The Conjugate Gradient Method for Linear and Nonlinear Operator Equations
- Quasi-Newton Methods and their Application to Function Minimisation
- Variable metric methods of minimisation
- A new approach to variable metric algorithms
- On the Convergence of the Variable Metric Algorithm
- The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations
- Methods of conjugate directions versus quasi-Newton methods
- Practical convergence conditions for unconstrained optimization
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: On the relation between quadratic termination and convergence properties of minimization algorithms. Part I. Theory