Cubical Sperner lemmas as applications of generalized complementary pivoting
From MaRDI portal
Publication:1242861
DOI10.1016/0097-3165(77)90081-4zbMath0367.90125OpenAlexW2082775939WikidataQ124817727 ScholiaQ124817727MaRDI QIDQ1242861
Publication date: 1977
Published in: Journal of Combinatorial Theory. Series A (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0097-3165(77)90081-4
Enumerative combinatorics (05A99) Mathematical programming (90C99) Triangulating (57R05) General reference works (handbooks, dictionaries, bibliographies, etc.) pertaining to manifolds and cell complexes (57-00)
Related Items (3)
Combinatorial approach to detection of fixed points, periodic orbits, and symbolic dynamics ⋮ Tile invariants: New horizons. ⋮ A remark on the invariance of dimension
Cites Work
- Unnamed Item
- Combinatorial properties of certain simplicial and cubical vertex maps
- Some Combinatorial Lemmas in Topology
- A generalized complementary pivoting algorithm
- Bimatrix Equilibrium Points and Mathematical Programming
- Simplicial maps from an orientable n-pseudomanifold into Sm with the octahedral triangulation
- On the Sperner lemma
This page was built for publication: Cubical Sperner lemmas as applications of generalized complementary pivoting