On smoothable curve singularities: Local methods
From MaRDI portal
Publication:1243022
DOI10.1007/BF01367580zbMath0368.32006MaRDI QIDQ1243022
Publication date: 1977
Published in: Mathematische Annalen (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/163045
Analytic sheaves and cohomology groups (32C35) Singularities of curves, local rings (14H20) Complex singularities (32Sxx)
Related Items (14)
Cotangent functors of curve singularities ⋮ A note on the torsion of differential forms ⋮ Partial trace ideals and Berger's conjecture ⋮ On one-dimensional local rings and Berger’s conjecture ⋮ Torsion des Differentialmoduls und Kotangentenmodul von Kurvensingularitäten ⋮ The Milnor number and deformations of complex curve singularities ⋮ Deformations of bouquets of quasihomogeneous one-dimensional singularities ⋮ Torsion in differentials and Berger's conjecture ⋮ On \(K_{2}\) of one-dimensional local rings ⋮ Ein Cohen-Macaulay Kriterium mit Anwendungen auf den Konormalenmodul und den Differentialmodul ⋮ On the torsion differentials ⋮ Smoothable varieties with torsion free canonical sheaf ⋮ The embedding dimension of the formal moduli space of certain curve singularities ⋮ Gorenstein rings as specializations of unique factorization domains
Cites Work
- Unnamed Item
- Unnamed Item
- Local cohomology. A seminar given by A. Grothendieck, Harvard University, Fall 1961. Notes by R. Hartshorne
- Monodromy of isolated singularities of hypersurfaces
- Complexe dualisant et théorèmes de dualité en géométrie analytique complexe
- Gap-sheaves and extension of coherent analytic subsheaves
- Residues and duality. Lecture notes of a seminar on the work of A. Grothendieck, given at Havard 1963/64. Appendix: Cohomology with supports and the construction of the \(f^!\) functor by P. Deligne
- Introduction to Grothendieck duality theory
- Differentialmoduln eindimensionaler lokaler Ringe
- Pathologies IV
- Singular Points of Complex Hypersurfaces. (AM-61)
This page was built for publication: On smoothable curve singularities: Local methods