Ein nichtlinearer Interpolationssatz und seine Anwendung auf nichtlineare Wellengleichungen
From MaRDI portal
Publication:1248908
DOI10.1007/BF01175610zbMath0384.35039OpenAlexW2021037155MaRDI QIDQ1248908
Publication date: 1978
Published in: Mathematische Zeitschrift (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/172684
Equations involving nonlinear operators (general) (47J05) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Wave equation (35L05)
Related Items (17)
Semi-linear wave equations ⋮ Regularity of solutions of critical and subcritical nonlinear wave equations ⋮ Interpolation of linear operators ⋮ Unnamed Item ⋮ Soliton resolution for the energy-critical nonlinear wave equation in the radial case ⋮ Classical solutions of nonlinear Schrödinger equations in higher dimensions ⋮ Interpolation and partial differential equations ⋮ Global classical solutions of nonlinear wave equations ⋮ Scattering for the critical and localised semilinear wave equation ⋮ Decay and asymptotics for higher dimensional nonlinear wave equations ⋮ The global Cauchy problem for the nonlinear Klein-Gordon equation. II ⋮ Generalized solutions to a semilinear wave equation ⋮ On the existence of global smooth solutions of certain semi-linear hyperbolic equations ⋮ The global Cauchy problem for the critical nonlinear wave equation ⋮ Finite time blowup for high dimensional nonlinear wave systems with bounded smooth nonlinearity ⋮ The global Cauchy problem for the nonlinear Klein-Gordon equation ⋮ On the global Cauchy problem for some nonlinear Schrödinger equations
Cites Work
- Unnamed Item
- Unnamed Item
- On \(L_2-L_{p'}\) estimates for the wave-equation
- \(L^p\)-Abschätzungen und klassische Lösungen für nichtlineare Wellengleichungen. II
- Klassische Lösungen nichtlinearer Wellengleichungen im Großen
- Interpolation non linéaire et régularité
- Spaces of distributions of Besov type on Euclidean n-space. Duality, interpolation
This page was built for publication: Ein nichtlinearer Interpolationssatz und seine Anwendung auf nichtlineare Wellengleichungen