Estimates for partial sums of the exponential series
From MaRDI portal
Publication:1249301
DOI10.1016/0022-247X(78)90119-1zbMath0385.41023MaRDI QIDQ1249301
Publication date: 1978
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Characteristic functions; other transforms (60E10) Asymptotic approximations, asymptotic expansions (steepest descent, etc.) (41A60) Large deviations (60F10) Inequalities for sums, series and integrals (26D15) Exponential and trigonometric functions (33B10)
Related Items
Unnamed Item ⋮ Remarques sur un théorème de G. Halász et A. Sárközy ⋮ On the number of restricted prime factors of an integer. II ⋮ Large deviations of combinatorial distributions. II: Local limit theorems ⋮ How often is the number of divisors of n a divisor of n ?
Cites Work
- On the number of restricted prime factors of an integer. II
- On the rate of approximation in the central limit theorem
- On the number of restricted prime factors of an integer. I
- Special functions and the limit properties of probability distributions. II
- On large deviations of additive arithmetic functions
- On uniform asymptotic expansion of definite integrals
- Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law
- Sur le nombre des diviseurs premiers de n
- Über Wahrscheinlichkeiten großer Abweichungen Dem 25. Jahrestag der DDE gewidmet
- The Coefficients in an Asymptotic Expansion
- A sharpening of the inequality of Berry-Esseen
- On large deviations
- Concerning an Approximation of Copson
- The normal approximation to the Poisson distribution and a proof of a conjecture of Ramanujan
- An Inequality on Poisson Probabilities
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Estimates for partial sums of the exponential series