Unités cyclotomiques, unités semi-locales et \(\mathbb{Z}_\ell\)-extensions
From MaRDI portal
Publication:1250239
DOI10.5802/aif.727zbMath0387.12002OpenAlexW1974411996MaRDI QIDQ1250239
Publication date: 1979
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_1979__29_1_49_0
Galois theory (11R32) Units and factorization (11R27) Class numbers, class groups, discriminants (11R29) Cyclotomic extensions (11R18) Other abelian and metabelian extensions (11R20)
Related Items (10)
Algebraic number fields ⋮ Les nombres de Tamagawa locaux et la conjecture de Bloch et Kato pour les motifs sur un corps abélien ⋮ A note on Greenberg’s conjecture and the abc conjecture ⋮ Formules de classes pour les corps abéliens réels. (Class formulae for real Abelian fields) ⋮ On the Iwasawa 𝜆-invariants of real abelian fields ⋮ Unités cyclotomiques, unités semilocales et \(\mathbb{Z}_\ell\)-extensions. II ⋮ Remarques sur les unites cyclotomiques et les unites elliptiques ⋮ On the Galois structure of algebraic integers and S-units ⋮ Class groups of abelian fields, and the main conjecture ⋮ On a normal integral basis problem over cyclotomic \(Z_{p}\)-extensions. II.
Cites Work
- A note on class numbers of algebraic number fields
- Ideals in an extension field as modules over the algebraic integers in a finite number field
- Classes d'idéaux des corps abéliens et nombres de Bernoulli généralisés
- Iwasawa invariants of abelian number fields
- On l-adic zeta functions
- On \(\mathbb Z_{\ell}\)-extensions of algebraic number fields
- On some properties of \(\Gamma\)-finite modules
- Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers.
- Onp-adicL-functions and cyclotomic fields. II
- Lectures on P-Adic L-Functions. (AM-74)
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Unités cyclotomiques, unités semi-locales et \(\mathbb{Z}_\ell\)-extensions