Ramanujan type formulas for \(\zeta (2k-1)\)
DOI10.1016/0022-4049(78)90037-3zbMath0391.10023OpenAlexW2053255342MaRDI QIDQ1251246
Larry Joel Goldstein, Michael J. Razar
Publication date: 1978
Published in: Journal of Pure and Applied Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0022-4049(78)90037-3
Arithmetic PropertiesAutomorphic FormCohomology TheoryEichler IntegralsEisenstein SeriesOdd Integer ArgumentRamanujan FormulasRiemann Zeta FunctionSl(2,Z)
(zeta (s)) and (L(s, chi)) (11M06) Special values of automorphic (L)-series, periods of automorphic forms, cohomology, modular symbols (11F67) Automorphic forms, one variable (11F12)
Related Items (1)
Cites Work
- Unnamed Item
- Eine Verallgemeinerung der Abelschen Integrale
- On integrals attached to automorphic forms
- Zeta functions and Eichler integrals
- Some functions related to the derivatives of the L-series of an elliptic curve at s=1
- Some formulas for the Riemann zeta function at odd integer argument resulting from Fourier expansions of the Epstein zeta function
- Generalized Dedekind Eta-Functions and Generalized Dedekind Sums
This page was built for publication: Ramanujan type formulas for \(\zeta (2k-1)\)