Differential equations and the Bergman-Silov boundary on the Siegel upper half plane
From MaRDI portal
Publication:1252947
DOI10.1007/BF02385985zbMath0395.22013MaRDI QIDQ1252947
Publication date: 1978
Published in: Arkiv för Matematik (Search for Journal in Brave)
Harmonic analysis on homogeneous spaces (43A85) Analysis on real and complex Lie groups (22E30) Hermitian symmetric spaces, bounded symmetric domains, Jordan algebras (complex-analytic aspects) (32M15) Differential geometry of symmetric spaces (53C35)
Related Items
Algèbres de Jordan et équations de Hua. (Jordan algebras and Hua's equations), Hua system on irreducible Hermitian symmetric spaces of nontube type., Hua operators on bounded homogeneous domains in \(\mathbb{C}^ n\) and alternative reproducing kernels for holomorphic functions, Characterization of the Poisson integrals for the non-tube bounded symmetric domains, Revisiting the Siegel upper half plane. I., Remarks on a theorem of Koranyi and Malliavin on the Siegel upper half plane of rank two, Generalized notions of harmonic functions symmetric spaces, Boundary behavior of harmonic functions on symmetric spaces: maximal estimates for Poisson integrals, Boundary Value Problems on Riemannian Symmetric Spaces of the Noncompact Type, Les équations de Hua d'un domaine borné symétrique du type tube. (The equations of Hua for a bounded symmetric domain of tube type)
Cites Work
- Unnamed Item
- Unnamed Item
- Poisson formula and compound diffusion associated to an overdetermined elliptic system on the Siegel halfplane of rank two
- The surjectivity of invariant differential operators on symmetric spaces. I
- A Poisson formula for semi-simple Lie groups
- Discrete series for semisimple Lie groups. II: Explicit determination of the characters
- Siegel's modular forms and Dirichlet series. Course given at the University of Maryland, 1969-1970
- Spherical Functions on a Semisimple Lie Group, I