Chebyshev approximation by \(\gamma\)-polynomials. III. On the number of best approximations
From MaRDI portal
Publication:1254679
DOI10.1016/0021-9045(78)90002-3zbMath0399.41019OpenAlexW2016310312MaRDI QIDQ1254679
Publication date: 1978
Published in: Journal of Approximation Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0021-9045(78)90002-3
Newton's MethodHaar Embedded ManifoldLocal Best ApproximationSigma PolynomialsUniqueness Theorem of Wulbert
Best approximation, Chebyshev systems (41A50) Approximation by polynomials (41A10) Approximation by other special function classes (41A30)
Related Items
Regular \(C^ 1-\)parametrizations for exponential sums and splines ⋮ On the number of local best approximations by exponential sums ⋮ Polya–Padé fourier resonance reconstruction and singular perturbation theory ⋮ A unified approach to differential characterizations of local best approximations for exponential sums and splines ⋮ An alternant criterion for Haar cones ⋮ Nonuniqueness of best rational Chebyshev approximations on the unit disk ⋮ A review of the parameter estimation problem of fitting positive exponential sums to empirical data
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the unicity of nonlinear approximation in smooth spaces
- On the numer of best approximations in certain non-linear families of functions
- Tschebyscheff-Approximation durch \(\gamma\)-Polynome mit teilweise fixierten Frequenzen
- Characterization of best approximations by sums of exponentials
- Approximation mit Exponentialsummen
- Continuity theorems for the Čebyšev approximation with exponential sums
- Approximation from a curve of functions
- On the continuity of the nonlinear Tschebyscheff operator
- On the compactness of exponential sums
- Die Konstruktion der Tschebyscheff-Approximierenden bei der Anpassung mit Exponentialsummen
- Chebyshev-approximation by \(\gamma\)-polynomials. II
- Kritische Punkte bei der nichtlinearen Tschebyscheff-Approximation