Pfister ideals in Witt rings
From MaRDI portal
Publication:1255028
DOI10.1007/BF01673508zbMath0401.10032OpenAlexW2050145143MaRDI QIDQ1255028
Tsit-Yuen Lam, Adrian R. Wadsworth, Richard Elman
Publication date: 1979
Published in: Mathematische Annalen (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/163319
Related Items (7)
Local Artinian rings and the Fröberg relation ⋮ Witt kernels of function field extensions ⋮ Witt rings and Brauer groups under multiquadratic extensions. II ⋮ Witt kernels of function field extensions in characteristic 2 ⋮ A class of finite commutative rings constructed from Witt rings ⋮ Piecewise equivalence of quadratic forms ⋮ Primary ideals in Witt rings
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Cohomologische Invarianten quadratischer Formen
- Zur Theorie der quadratischen Formen über formalreellen Körpern
- On multiples of round and Pfister forms
- Reduzierte quadratische Formen und Semiordnungen reeller Körper
- Function fields of Pfister forms
- Über die Pythagoraszahl eines Körpers
- On some Hasse principles over formally real fields
- Signatures on semilocal rings
- Quadratische Formen über Körpern
- Pfister forms and \(K\)-theory of fields
- Quadratic forms and the u-invariant
- Hasse principles and the u-invariant over formally real fields
- Generic Splitting of Quadratic Forms, I
- Generic Splitting of Quadratic Forms, II
- Hasse principle for the Hurwitz problem.
- Remarks on the Pythagoras and Hasse number of real fields.
- Classification of Finite Spaces of Orderings
- Quadratic Forms Over Formally Real Fields and Pythagorean Fields
This page was built for publication: Pfister ideals in Witt rings