Approximation numbers of Sobolev imbeddings over unbounded domains
DOI10.1016/0022-1236(78)90047-2zbMath0402.46023OpenAlexW1965862118MaRDI QIDQ1255669
Publication date: 1978
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0022-1236(78)90047-2
Elliptic OperatorsDirichlet Boundary ConditionsApproximation NumbersEmbeddingsGel'Fand NumbersKolomogoroff NumbersSobolev Spaces
Nonlinear boundary value problems for linear elliptic equations (35J65) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Linear operators belonging to operator ideals (nuclear, (p)-summing, in the Schatten-von Neumann classes, etc.) (47B10) Spectrum, resolvent (47A10) General theory of partial differential operators (47F05)
Related Items (5)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Diagonal operators, approximation numbers, and Kolmogoroff diameters
- Operator properties of Sobolev imbeddings over unbounded domains
- An embedding theorem for function spaces
- Über Sätze von M. Zamansky und S.B. Steckin und ihre Umkehrungen auf dem \(n\)-dimensionalen Torus
- s-Numbers of operators in Banach spaces
- DIAMETERS OF SETS IN NORMED LINEAR SPACES AND THE APPROXIMATION OF FUNCTIONS BY TRIGONOMETRIC POLYNOMIALS
- On kernels, eigenvalues, and eigenfunctions of operators related to elliptic problems
- PIECEWISE-POLYNOMIAL APPROXIMATIONS OF FUNCTIONS OF THE CLASSES $ W_{p}^{\alpha}$
- Some Imbedding Theorems for Sobolev Spaces
This page was built for publication: Approximation numbers of Sobolev imbeddings over unbounded domains