Restrictions and extensions of potentials of \(H^p\) distributions
DOI10.1016/0022-1236(79)90095-8zbMath0402.46034OpenAlexW2091734839MaRDI QIDQ1255673
Publication date: 1979
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0022-1236(79)90095-8
Tempered DistributionAnisotropic Riesz PotentialsFefferman-Stein ClassHomogeneous Lipschitz ClassesSchwartz FunctionSobolev Classes
Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Banach algebras of differentiable or analytic functions, (H^p)-spaces (46J15) Topological linear spaces of test functions, distributions and ultradistributions (46F05)
Related Items (6)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in \(n\) variabili
- Parabolic maximal functions associated with a distribution. II
- Comparison theorems for a generalized modulus of continuity
- Spaces of distributions of Besov type on Euclidean n-space. Duality, interpolation
- \(H^p\) spaces of several variables
- On spaces of potentials connected with \(L^ p\) classes
- On a mean value inequality
- Extensions by mollifiers in Basov spaces
- Lebesgue and Lipschitz spaces and integrals of the Marcinkiewicz type
- Intermediate spaces and interpolation, the complex method
- Distribution function inequalities for the area integral
- The Hardy Space H1 on Manifolds and Submanifolds
- Singular integrals in the space Λ(B,X)
This page was built for publication: Restrictions and extensions of potentials of \(H^p\) distributions